Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory

نویسنده

  • DOUGLAS GREGORY
چکیده

Friedrichs and Dressler and Gol’denveiser and Kolos have independently shown that the classical plate theory of Kirchhoff is the leading term of the outer expansion solution (in a small thickness parameter) for the linear elasto-statics of thin, flat, isotropic bodies. As expected, neither this leading term nor the full outer solution alone is able to satisfy arbitrarily prescribed edge conditions. On the other hand, the inner solution, which is significant only near the edge, is determined by a sequence of boundary value problems which are very difficult to solve, nearly as difficult as the original problem. For stress edge-data, St. Venant’s principle may be invoked to generate a set of stress boundary conditions for the classical plate theory as well as for some higher order terms in the outer expansion without any reference to the inner solution. Attempts in the literature to derive the corresponding boundary conditions for displacement edge-data have not been successful. With the help of the Betti-Rayleigh reciprocity theorem, we have derived the correct set of boundary conditions for classical and higher order plate theories with arbitrary edge-data. In this paper, we work out these conditions for an infinite plate strip with edgewise uniform data. We show that the conditions for individual terms in the outer expansion may be summed to give a simple set of appropriate boundary conditions for the full outer solution at the mid -plane. The boundary conditions obtained for the semi-infinite plate case a r e rigorously correct and the result for the stress data case rigorously justifies the application of St. Venant’s principle. Applications of the displacement boundary conditions obtained are illustrated by two simple problems: (i) The shearing of an infinitely long rectangular block, and (ii) A clamped infinite plate strip under uniform face pressure. Abklingende ebene Dehnungszustände in einem halb-unendlichen Streifen und Randbedingungen fur die Plattentheorie (Zusammenfassung) Friedrichs und Dressler sowie Gol’denveiser und Kolos haben unabhängig voneinander gezeigt, dass das erste Glied der durch äussere Entwicklung (nach einem kleinen Dickeparamter) gewonnenen Lösung für die lineare Elastostatik dünner ebener, isotroper Körper zur klassischen Kirchhoffschen Plattentheorie führt. W i e erwartet k a n n weder dieses erste Glied noch d i e vollständige aussere Lösung allein willkürlich vorgegebene Randwerte erfüllen. Andererseits ist die innere Lösung die nur in Randnähe von Bedeutung ist, durch eine Folge von Randwertproblemen bestimmt, die sehr schwer zu lösen sind, nahezu ebenso schwer wie + The research is partly supported by NSERC Operating Grant No. A9259 and, in the case of the second author, also by a UBC Killam Senior Fellowship.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF BOUNDARY CONDITIONS ON LOCALIZED INSTABILITY OF THE SEMI-INFINITE ORTHOTROPIC PLATE

This paper is concerned with an investigation into the localized instability of a thin elastic orthotropic semi-infinite plate. In this study, a semi-infinite plate, simply supported on two edges and under different boundary conditions of clamped, hinged, sliding contact and free on the other edge, is studied. A mathematical model is used and a general solution is presented. The conditions unde...

متن کامل

Dynamic Stability of Moderately Thick Composite Laminated Skew Plates using Finite Strip Method

The dynamic instability regions of composite laminated skew flat plates subjected to uniform in-plane axial end-loading are investigated. The in-plane loading is assumed as a combination of a time-invariant component and a harmonic time-varying component uniformly distributed along two opposite panel ends’ width. In case of some loading frequency-amplitude pair-conditions, the model is subjecte...

متن کامل

A Static Flexure of Thick Isotropic Plates Using Trigonometric Shear Deformation Theory

A Trigonometric Shear Deformation Theory (TSDT) for the analysis of isotropic plate, taking into account transverse shear deformation effect as well as transverse normal strain effect, is presented. The theory presented herein is built upon the classical plate theory. In this displacement-based, trigonometric shear deformation theory, the in-plane displacement field uses sinusoidal function in ...

متن کامل

Free Vibration of Thick Isotropic Plates Using Trigonometric Shear Deformation Theory

In this paper a variationally consistent trigonometric shear deformation theory is presented for the free vibration of thick isotropic square and rectangular plate. In this displacement based theory, the in-plane displacement field uses sinusoidal function in terms of thickness coordinate to include the shear deformation effect. The cosine function in terms of thickness coordinate is used in tr...

متن کامل

Semi-Analytical Solution for Vibration of Nonlocal Piezoelectric Kirchhoff Plates Resting on Viscoelastic Foundation

Semi-analytical solutions for vibration analysis of nonlocal piezoelectric Kirchhoff plates resting on viscoelastic foundation with arbitrary boundary conditions are derived by developing Galerkin strip distributed transfer function method. Based on the nonlocal elasticity theory for piezoelectric materials and Hamilton's principle, the governing equations of motion and boundary conditions are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001